Home Tags CYBERSECURITY

Tag: CYBERSECURITY

Quantum Computing Introduction
Quantum computing holds the potential to revolutionize fields where classical computers struggle, particularly in areas involving complex quantum systems, large-scale optimization, and cryptography. The power of quantum computing lies in its ability to leverage the principles of quantum mechanics—superposition and entanglement—to perform certain types of calculations much more efficiently than classical computers.
US vs China 5G
Emerging Technology and Geopolitics of 5G There are several reasons emerging technology is a highly competitive industry, notwithstanding the race for intellectual property that can be licensed by burgeoning markets for revenue. A first-mover advantage is often a way to lock in relationships that can lead to long-term infrastructure commitments, integration support services, and service delivery platform development. As the adage goes, “Whoever owns the platform, owns the customer.” This race to be the first to establish technological platforms and lock-in their customers is increasingly becoming politicized. And 5G, the next generation of cellular mobile communications technology, is the best...
5G Security Privacy
Don’t let the “5G” in the title confuse you. This post is not only about the telcos’ core networks, but about the 5G security and privacy issues in our (very) near, and very different future that 5G will enable. In the 5G-enabled massive Internet of Things (mIoT) world we’re about to find ourselves in, we are expected to have 1000 devices connected for every person… These devices will be the components of the ‘5G operating system’ for our smart cities, our industry 4.0, our smart homes, smart transportation, smart healthcare, and much more. To enable this future, we will...
Smart City 5G Privacy
More than half of the world’s population lives in cities. The UN estimates that by 2050 that proportion will be 68% - more than 6 billion people living in high-density conditions. This raises significant challenges. What is the best way to ensure that human needs are met in a fair and equitable way? How will we face challenges like resource strain, waste and pollution management, traffic congestion and connectivity? In response to these wicked problems, cities are increasingly relying on smart technologies to foster greater efficiency and sustainable growth. These interventions do not, however, come without their own complications. Just...
Quantum Random Number Generation QRNG
Cryptographic systems rely on the unpredictability and randomness of numbers to secure data. In cryptography, the strength of encryption keys depends on their unpredictability. Unpredictable and truly random numbers—those that remain secure even against extensive computational resources and are completely unknown to adversaries—are among the most essential elements in cryptography and cybersecurity.
Quantum Artificial Intelligence QIA
Quantum Artificial Intelligence (QAI) represents an emerging frontier where quantum computing meets artificial intelligence. This interdisciplinary field explores how quantum algorithms can enhance, accelerate, and expand the capabilities of conventional AI systems. Quantum computing's potential to process complex datasets exponentially faster than classical computers could revolutionize areas like machine learning, optimization, and pattern recognition.
Superconducting Quantum Computer
The intricate giant chandelier of copper tubes, wires, and shielding often leaves people puzzled and curious. This image of a quantum computer is quite striking and unlike any classical computer we've seen before. This unique appearance is not just for show; it's a direct result of the specific technological requirements needed to operate quantum computers, particularly those based on superconducting qubits.
Quantum Computing Use Cases

Quantum Computing Use Cases

Fidelity in quantum computing measures the accuracy of quantum operations, including how effectively a quantum computer can perform calculations without errors. In quantum systems, noise and decoherence can degrade the coherence of quantum states, leading to errors and reduced computational accuracy. Errors are not just common; they're expected. Quantum states are delicate, easily disturbed by external factors like temperature fluctuations, electromagnetic fields, and even stray cosmic rays.
Cybersecurity IoT 5G Cyber-Kinetic Risks
Getting smart about security in smart systems Smart used to be something we called people or pets. It wasn't a term one would use to describe one's hairbrush. That is changing, of course, in an era of accelerating digital transformation. Now we have smart homes, smart cities, smart grids, smart refrigerators and, yes, even smart hairbrushes. What's not so smart, though, is the way the cybersecurity and cyber-kinetic security risks of these systems are often overlooked, and with new horizon technologies like 5G, these problems are set to grow exponentially. Cyber-physical systems and the smartification of our world Cyber-connected objects have become...
AI Cybersecurity Battlefield
Cybersecurity strategies need to change in order to address the new issues that Machine Learning (ML) and Artificial Intelligence (AI) bring into the equation. Although those issues have not yet reached crisis stage, signs are clear that they will need to be addressed – and soon – if cyberattackers are to be prevented from obtaining a decided advantage in the continuing arms race between hackers and those who keep organizations’ systems secure.
IoT Cybersecurity Framework Government
The human brain is programmed to keep us safe and secure. Yes, we are separated from the rest of the animal kingdom by our advanced capacities of sense-making and decision-making, but at the core of our grey matter remains some primitive but powerful tech tasked with keeping us alive. If your amygdala senses danger, it makes a split second decision and triggers the fight-or-flight response, flooding your body with hormones like adrenaline that prepare you for battle. This overrides the cortex – the sophisticated part of the brain we rely on for problem-solving and strategic thinking – making it...
IoT Bomb Stuxnet
While Stuxnet is gone, the world now knows what can be accomplished through cyber-kinetic attacks. As we approach the 10th anniversary of when Stuxnet was (likely) deployed, it is worthwhile to examine the effect it still has on our world. As the world’s first-ever cyberweapon, it opened Pandora’s box. It was the first true cyber-kinetic weapon – and it changed military history and is changing world history, as well. Its impact on the future cannot be overstated. Stuxnet’s beginnings Stuxnet is believed to have been conceived jointly by the U.S. and Israel in 2005 or 2006 to cripple Iran’s nuclear weapon development...
Cyber-Kinetic
The attacker stepped out from behind a hedge in the upper-class suburban neighborhood, being careful to stay in the shadows. Across the street, the last lights shining through the windows of the house had just flickered out. She tugged the bottom of her black hoodie into place and pulled the hood up over her head, casting her face deeper in shadow. Her target sat in the driveway at the front of the house, a bright red and completely decked out SUV. Glancing up and down the street to ensure no one was looking, she slipped across the street into the...
Regulation IoT 5G Cybersecurity
In one of those strange inversions of reason, The Internet of Things (IoT) arguably began before the Internet itself. In 1980, a thirsty graduate in Carnegie Mellon University’s computer science department, David Nichols, eventually grew tired of hiking to the local Coca Cola vending machine only to find it empty or stocked entirely with warm cola. So, Nichols connected the machine to a network and wrote a program that updated his colleagues and him on cola stock levels. The first IoT device was born. Things have moved on somewhat. Today, the world is home to 8 billion connected devices or “things”, with...
Stuxnet Cyber-Physical Weapon
Stuxnet was the first true cyber-kinetic weapon, designed to cripple the Iranian – and perhaps also the North Korean – nuclear weapon programs. It succeeded in slowing the Iranian program, although it was discovered before it could deal the program a fatal blow. Its significance goes far beyond what it did. It marks a clear turning point in the military history and cybersecurity. Its developers hoped for a weapon that could destroy strategic targets without civilian damage possible in traditional warfare. Instead, it opened the door to cyberattacks that can deliver widespread disruption to the very civilian populations it was...