Home Tags TECHNICAL

Tag: TECHNICAL

IoT Protocols Speed Range
IoT Wireless Protocols in a spreadsheet format. Includes downloadable Excel spreadsheet.
QKD BB84
Quantum Key Distribution (QKD) represents a radical advancement in secure communication, utilizing principles from quantum mechanics to distribute cryptographic keys with guaranteed security.Unlike classical encryption, whose security often relies on the computational difficulty of certain mathematical problems, QKD's security is based on the laws of physics, which are, as far as we know, unbreakable.
5G Virtualization
Depending on who you speak to, 5G is either humankind’s greatest imminent blessing or its greatest imminent curse. Still in its infancy, and not yet commercially standardized, this technology has already been the most polarizing advancement we have ever seen in communication. Consumers worldwide are captivated by promises of super-fast download speeds, split-second responsiveness and next-level mobile phone communication, but are divided on the possible sacrifices of privacy and security. Detractors continue to issue condemnations of 5G cellular’s possible health risks. Supporters continue to shake their heads in disbelief. Governments jostle for geopolitical supremacy; 5G is seen as both a proxy...
Quantum Computer 5G Security

The Quantum Computing Threat

Recently, in the science journal Nature, Google claimed ‘quantum supremacy’ saying that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine. This quantum computing breakthrough brings us closer to the arrival of functional quantum systems which will have a profound effect on today's security infrastructure. How will quantum computing affect the security of 5G technologies currently being developed and deployed? Last spring we suggested that the emergence of quantum internet connectivity and computation, expected sometime in the next decade, poses numerous new cryptography and cybersecurity challenges for 5G security. MIT offers...
NFC Cybersecurity
NFC is a short range two-way wireless communication technology that enables simple and secure communication between electronic devices embedded with NFC microchip. NFC technology operates in 13.56 megahertz and supports 106, 212, or 424 Kbps throughput. There are three available modes of NFC communication: Read/write (e.g. for reading tags in NFC posters) Card emulation (e.g. for making payments) Peer-to-peer (e.g. for file transfers) There is no need for pairing code between devices, because once in range they instantly start communication and prompt the user. NFC technology is power efficient - much more than other wireless technologies. The communication range of NFC is approximately...
RFID Cybersecurity
Radio-Frequency Identification (RFID) is a technology commonly used for identification, status administration and management of different objects. It is important for people identification, as it is commonly deployed in the latest biometric passports.  It operates in several frequency bands like Low frequency band from 125 kHz to 134 kHz, High frequency band with 13.56MHz working frequency, Ultra-high frequency band with 433 MHz working frequency and 860 - 960 MHz sub-band. In Ultra-high frequency bands there are two types of RFID systems—Active and Passive. Active RFID system operates on 433 MHz radio frequency and on 2.4GHz from Extremely High- Frequency Range. It supports...
AI and 5G Double-edged Sword
If you've ever been to an expensive restaurant and ordered a familiar dish like, say, lasagna, but received a plate with five different elements arranged in a way that does not at all resemble what you know as lasagna, then you have probably tasted deconstructionism. This approach to cuisine aims to challenge the way our brain makes associations, to break existing patterns of interpretation and, in so doing, to release unrealized potential. If the different elements work together harmoniously, it should be the best lasagna you've ever tasted. So it is with 5G. In principle, the 5th Generation network is deconstructed. Firstly,...
Wi-Fi Cybersecurity
The Wi-Fi represents wireless technology that includes the IEEE 802.11 family of standards (IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac, etc.). Within 50m range, it operates in 2.4 GHz and 5GHz frequency bands,. This technology was developed for wireless networking of computer devices and is commonly called WLAN (Wireless Local Area Network), where the communication is realized between wireless routers typically connected to the Internet and other wireless nodes within its range. In correlation with performances of specific IEEE 802.11 standards, different data rates are enabled and their theoretical throughput is 11 Mbps (IEEE 802.11b), 54 Mbps (IEEE...
Bluetooth Cybersecurity
Bluetooth is short-range wireless communications technology based on the IEEE 802.15.1 protocol. It works in a crowded license free 2.4 GHz frequency band and shares this resource with many other technologies. Bluetooth is the optimal solution for establishing small wireless networks called Piconets, by connecting two Bluetooth devices. One of these nodes is Master that can be connected via Bluetooth link to 7 other Bluetooth devices—Slave nodes in Personal Area Network (PAN). Typical data rates are 1-3 Mbps. The newest versions of Bluetooth is known as Bluetooth Low Energy (BLE) or Bluetooth smart. It is important to note that Bluetooth and BLE...
Zigbee Security
Zigbee technology introduction Zigbee is wireless PAN (Personal Area Network) technology developed to support automation, machine-to-machine communication, remote control and monitoring of IoT devices. It evolved from IEEE 802.15.4 wireless standard and supported by the ZigBee Alliance. IEEE 802.15.4 standard determines specifications for the physical and data link layer and Zigbee Alliance provides standards from network layer to application layer. While Zigbee determines the contents of the transmitted message, the 802.15.4 standard provides details about the robust radio communication and medium access control. The Zigbee Alliance, as a non-profit association, develops open global Zigbee standard for use in the Internet of Things...
LoRaWAN IoT Security
I get accused of focusing too much on 5G as the only future IoT connectivity option. I do write a lot about how 5G will revolutionize our society, become the most critical of critical infrastructures and about security threats with 5G. I see 5G, with its low latency, high bandwidth, network slicing and ubiquitous coverage becoming the foundational capability for mission critical industrial, agricultural, financial, medical, education, energy and transportation, even military and emergency services IoT communication needs. That’s not to say that 5G is the only IoT connectivity option. There are plenty of others. IoT applications have some common requirements...
5G Cell Tower
Ultra high speed, high quality 5G networks are expected to provide the connectivity required for massive IoT adoption, remote robotic surgery as well as instant movie downloads and 3D mobile gaming. The technology boasts incredible reliability and low latency and promises to enable the next industrial revolution and society 5.0. Assuming that 5G policy and regulatory issues are sorted out. However, recent hype generated by mobile operators and false promises inevitably mean that unreasonable early expectations will go unmet. So far, China and Huawei have out-competed Americans in development and deployment of 5G technology. The Trump Administration is keenly aware...
5G Network Slicing
Hyped as the technology that will transform the world, 5G is moving past the buzzword stage with first implementations coming to life in 2019. Nations are racing to 5G with such fervor that it now became one of the hottest hot-button geopolitical issues. With latency as low as 1 ms and speeds of up to 4 Gbps, as well as a wider range of frequency bands and enhanced capacity, 5G will be able to accommodate innovative use cases and much greater numbers of connected devices, driving overall growth for Internet of Things (IoT). In addition to the speed and capacity improvements,...
5G Security Privacy
Don’t let the “5G” in the title confuse you. This post is not only about the telcos’ core networks, but about the 5G security and privacy issues in our (very) near, and very different future that 5G will enable. In the 5G-enabled massive Internet of Things (mIoT) world we’re about to find ourselves in, we are expected to have 1000 devices connected for every person… These devices will be the components of the ‘5G operating system’ for our smart cities, our industry 4.0, our smart homes, smart transportation, smart healthcare, and much more. To enable this future, we will...
Cyber-Kinetic Security Railway
Cybersecuring railway systems from potential attackers must become paramount in the digitization that those systems currently undergo. Their cybersecurity is too closely interlinked with the railway safety to leave the door open to disruption. To make matters worse, they are increasingly being targeted. Railway systems have long been critical. Mass transit systems move hundreds of thousands of people throughout urban areas each work day. Freight systems move an estimated 40 tons of freight for every person in the U.S. every year. Imagine the chaos if they were disrupted. These systems have always been challenging to secure. Even urban mass transit systems...